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Local structure theory calculations 7 are applied to the study of cellular auto- 
mata on the two-dimensional hexagonal lattice. A particular hexagonal lattice 
rule denoted (3422) is considered in detail. This rule has many features in 
common with Conway's Life. The local structure theory captures many of the 
statistical properties of this rule; this supports hypotheses raised by a study of 
Life itself. 16) As in Life, the state of a cell under (3422) depends only on the state 
of the cell itself and the sum of states in its neighborhood at the previous time 
step. This property implies that evolution rules which operate in the same way 
can be studied on different lattices. The differences between the behavior of these 
rules on different lattices are dramatic. The mean field theory cannot reflect 
these differences. However, a generalization of the mean field theory, the local 
structure theory, does account for the rule-lattice interaction. 

KEY WORDS:  Cellular automata; mean-field theory; statistical mechanics; 
chaos; dynamical systems; lattice gas. 

1. I N T R O D U C T I O N  

Cellular automata are discrete, deterministic dynamical systems with a 
variety of complex and chaotic behaviors. (14) A cellular automaton operates 
on a discrete, regular lattice of cells, each with a finite number of states. An 
interaction rule specifies the state of a cell at a given time in terms of the 
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states of nearby cells at a previous time. Our interest here is in a statistical 
description of cellular automaton behavior. That is, rather than thinking of 
a cellular automaton as acting on configurations of cell states on a lattice, 
we consider the action of an automaton on probability measures on the set 
of all possible configurations. 

The local structure theory (7) is a model of the action of a cellular 
automaton on a probability measure. The idea is to replace a general 
measure by one whose structure is simple enough to allow analytical 
approximation of the cellular automaton's action on it. These simple 
measures are called finite block measures, since their properties are com- 
pletely determined by the specification of the probabilities of contiguous 
sequences of cell states, called blocks, of a fixed finite size. The local struc- 
ture operator, defined below, maps finite block measures to finite block 
measures in a way which approximates a cellular automaton map on 
general measures on the set of infinite lattice configurations. 

There is a major difference between local structure theory in one 
dimension and in more than one dimension. In one dimension, there is a 
simple, explicit procedure for extending a given specification of probability 
of finite-sized blocks to a canonical shift-invariant measure on blocks of 
arbitrary size. In more than one dimension, it may be shown that there is 
no algorithm for deciding whether shift-invariant extension is possible at 
all. This is related to the undecidability of whether the plane can be 
tesselated with a given collection of polygons. (1~ 

Since cellular automata themselves are shift-invariant, we focus on 
their action on shift-invariant probability measures, In more than one 
dimension, it is not always possible to rigorously define shift-invariant 
measures in terms of finite-block probabilities. However, approximate 
extension formulas whose form is justified by heuristic arguments have 
been proposed. (6'12) In one case explored in detail, ~6) these calculations 
provided an accurate estimate of the limit density of a prototypically com- 
plex rule on the two-dimensional square lattice, Conway's game of Life. (2) 

Our aim here is to examine the application of the local structure 
theory to rules on the hexagonal lattice. There are several reasons for this: 
First, it will help establish whether success in predicting the limit density 
for Life was generic or fortuitous. Second, since the cells in the hexagonal 
lattice have fewer neighbors than those on the square lattice, exploration of 
higher order theory is possible. Third, these calculations may serve as a 
preamble to studies of hexagonal lattice gases. (4~ Fourth, it will let us 
examine the ability of the local structure theory to account for effects of 
lattice connectivity on the nature of a cellular automaton rule. 

A technique we will use to distinguish effects of lattice connectivity 
from those of cellular automaton rule structure is to define a sequence of 
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cellular automata on different lattices which have in some sense "the same" 
rule. The rules in the sequence are the same in that they have the same 
mean-field theory approximation. The differences between them are due to 
higher-order interactions due to lattice connectivity which can only be dis- 
tinguished by higher-order local structure theory. We focus on a particular 
hexagonal rule which, though very similar to Life in rule structure, exhibits 
a very striking dependence on lattice connectivity which is opposite, in a 
sense, to that of Life. 

2. E M P I R I C A L  R E S U L T S  

1. O u t e r - T o t a l i s t i c  Rules 

Rules may be said to be outer-total&tic if the state of a cell at the next 
time-step depends only on its own state, and the sum of the states of its 
neighbors. ~9) We chose to study a class of outer-totalistic, nearest-neighbor 
rules on the hexagonal lattice in which each cell may have one of two 
states. Some of these results have the potential to support growth of 
configurations beyond their initial bounds. On the hexagonal lattice, such 
potential for growth implies that a "birth" (a cell which changes from 0 
to 1) must be permitted if two or fewer neighbors are alive (in state 1). 
However, permitting a birth with only a single neighbor alive is likely to 
lead to uncontrollable growth. In the notation of Bays, r we thus limit our- 
selves to rules of the form (xy22). 4 Typical limit configurations which arise 
from application of rules of the form (xy22) to a random, 50 % occupied 
initial configuration are shown in Fig. 1. Three of the rules result in limit 
configurations of high density. Of these, two develop obvious correlation 
structure and one does not. The other three rules have limit configurations 
consisting of a sparse collection of stable structures. Rule (3422) has the 
greatest variety of stable structures, and was explored in more detail. 

Rule (3422) was found to give rise to dozens of distinct periodic struc- 
tures, with periodicities 2, 3, 4, 5, 10, 12, and 48. As in Life these structures 
were encountered in the evolution of simple starting configurations (such 
as triangles and hexagons). Random configurations evolved into sparse 
collections of these stable configurations. Some of these periodic structures 
transformed into rotated copies (rotation of 2 n/3) or mirror images at 

4 Bays' notation (EIE~FIF,) denotes a rule in which the number of neighbors must be in the 
(inclusive) range [El, E~] for survivial, and ix the range [Ft, Fu] for birth. Conway's Life is 
denoted (2333). 
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Fig. 1. Configurations at generation 300 under several hexagonal rules of the form (xy22). 
Random initial configurations. (a)(2222); (b)(2322); (c)(2422); (d)(3322); (e)(4422); 
(f) (3422). 

appropriate submultiples of the period. Some periodic structures are shown 
in Fig. 2. 

In addition to these spontaneously arising stable structures, rule 
(3422) also supports enclosures of arbitrary length and width (for example, 
Fig. 3). The enclosures are not destroyed by collision from the inside. Thus 
within such a barrier, (3422) may be considered to emulate a variety of 
one-dimensional rules. An example of such an emulation is shown in Fig. 4. 
One generation of the nearest-neighbor rule 90 (14) is emulated by two 
generations of rule (3422). A live cell in rule 90 is represented by a triplet of 
cells in (3422), and the ends of the enclosure are reflecting barriers. 

Although the rich set of periodic structures suggest that (3422) is 
"complex," it is far from clear that it is computationally universal. To 
demonstrate that Life is computationally universal, Conway (2) made heavy 
use of gliders (structures that translate after some number of interactions of 
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Fig. 2. Some stable structures of (3422) on the hexagonal lattice. (a) period 2; (b) period 4; 
(c) period 5; (d) period 12. A single hexagon is outlined for reference. 

the rule). In rule (3422), gliders are either absent or extraorinarily rare: 
none were encountered in 10 6 iterations of a Monte Carlo search algorithm 
which yielded gliders in Life at a rate of one per ten iterations. 

2. O u t e r - T o t a l i s t i c  Rules in O n e - D i m e n s i o n  

Of the main features of Life, rich cycle structure and sparse limit con- 
figurations, but not the existence of gliders, are present in the rule (3422). 
To explore the extent to which these properties are due to the rule itself, or 
to lattice connectivity, we studied these same rules on a one-dimensional 
lattice (neighborhood radius 4 for Life and 3 for (3422)). On the one- 
dimensional lattice, random configurations under Life typically die, though 
they may evolve into simple stable configurations (prototypically, 
01100110) (Fig. 5a). Rule (3422) in one dimension has more complex 
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Fig. 4. An emulation within an enclosure by rule (3422) of the one-dimensional rule 90. 
Each successive picture represents two time-steps of rule (3422). This emulates one time-step 
of rule 90. 



L o c a l  S t r u c t u r e  T h e o r y  5 0 1  

~=- -"  " " ~ m " " L -~  . . . .  ~ "~"  ~ . . . .  r  ~ - ' ~ , /A  = . . . . .  "=~ - "  . ~ - : .  " ]~ !~  �9 ~ ,  = _ . . ~ ~ - 

~g 

Fig. 5, 

,<-$):.).~" := :::' ~ -_-:--:'-[~--- - = }-=- . . . . . . . . .  _---:-:-- =---- ---:=-----_--=- ~ -  - - -  r N :L-..=-=---: -:--=-=-_ 

_:-L--:=--_] -~,=-_:-'.-_= :=--;.~,:.-'-:_.-• Z::---":--_ :~- ' : ; '~ ::::----= ~=- :~ ; - 
:~----=":". ":-"-: --:"~L-.-!'?-. "fz:,_m~..- - =  - - ; . : - :  =-_ --T.~::-'- : ~-.=-_-=' :- :_ - : ~ . 2  

. . . . .  - - -M :# :J - -  ---z~;~.~ - '~---. ]2~ Fb: r162 ::~4,~ ---m%:.- " - ~ -  i_:;--" =-=: T 
:~ :=-7-~1-]~-._-40~-m: ~i:: N:~ : ~ : :  _=:_:-- Z~- : := : -  - '  ~ ~--~:--.:_= - : - - :  . . . . . .  

: - _ - - ( : - - _ < :  : ' -  - ' - ~  i ' f~  :-~ .-'-'.:-:: " ~ " " (~ .Z  - : k ~ - = - _  " : F  ....::b'__- . - - : :  . . . . .  -_ :-_-=-2 :-=i_::_-:~ 

P a t t e r n s  g e n e r a t e d  b y  (a) Life and (b) (3422) o n  t h e  o n e - d i m e n s i o n a l  l a t t i c e  f r o m  a 
r a n d o m  ini t ia l  start .  

behavior (Fig. 5b). For example, gliders of period 1 (01010010) spon- 
taneously form. They disintegrate when they collide with other structures. 
Interacting regions of the form ...00ii00jj00kk00... also develop. On these 
regions (3422) acts in a manner isomorphic to the linear, nearest-neighbor 
rule 90. 

Thus Life, which in two dimensions supports a variety of complex 
structures, becomes rather simple in one dimension. Rule (3422) on the 
other hand, has complex behavior behavior in one dimension, including 
the generation of gliders, while in two dimensions it loses the ability to 
produce gliders. 

The empirical limit densities for several outer-totalistic rules on the 
one-dimensional and two-dimensional hexagonal lattice are presented in 
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Table I. Monte Carlo (MC) and Mean-Field (MF) Theory Limit Densities for 
Several Rules of the Form (xy22) on the One-Dimensional and 

Two-Dimensional  Hexagonal Lattice. Init ial Configurations Were Generated 
Pseudorandomly to Have Density 0.5 

Rule MF MC-Hex MC-1D 

2222 0.32 0.297 0.077 
3322 0.27 0.017 0.282 
2322 0.41 0.574 0.545 
4422 0.19 0.023 0.283 
2422 0.51 0.598 0.615 
3422 0.31 0.021 0.274 

Table I, along with mean-field calculations (see below). For  these 
calculations, an initial density of 0.5 was used. Extensive empirical studies 
of rule (3422) indicate that its limit density does not depend appreciably on 
the initial density, provided that the initial density is in the range 0.2 to 0.8. 
For initial densities very close to 0. or to 1., the limit density is close to 
zero.  

3. ANALYTIC APPROXIMATION OF STATISTICAL 
PROPERTIES 

1. The Mean-Field Theory 

The mean-field theory is a simple model of the statistical properties of 
a cellular automaton. The mean field theory is based on the assumption 
that the states of cells are uncorrelated with the states of other cells. (13) 
Under this assumption it is trivial to estimate the probability of any block 
of states in terms of the probability of a single state. The probability of a 
block is simply the product of the probabilities of the states of the cells in 
the block. 

We assert that the probability that a cell has a particular state at a 
given time t + 1 is the sum of the probabilities of the blocks that map to 
this state at time t. We need only consider blocks defined in the 
neighborhood of the cell of interest, because the cellular automaton rule is 
local. The neighborhood of a single cell under a nearest-neighbor celluar 
automaton on the hexagonal lattice, or a radius 3 rule on the one-dimen- 
sional lattice, is a collection of 7-cell blocks. Consider such an automaton, 
T, with two states per cell, labeled 0 and 1. If B is a 7-block then v(B) is 
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either a 0 or a 1. If p, is the probability of a 1 at time t (the density at 
time t), then the mean-field theory gives the density at time t + 1 as 

P,+I =~z(B)(P,)  #I(B) (1 _ p,)#o(B) (1) 
B 

where the sum is taken over all 7-blocks, and #0(B) and # I(B) are the 
number of O's and l's respectively in a block B. For a nearest neighbor 
cellular automaton on the square lattice, or a radius 4 rule on the one- 
dimensional lattice, the sum in Eq. 3 is taken over 9-blocks. 

It is important to note that the mean-field theory does not distinguish 
between cellular automata which have the same evolution rule with the 
same number of neighbors, but are defined on different lattices. Thus, the 
fixed point of the mean-field theory equation for Life, 0.37, is an estimate 
for large-time density of both one- and two-dimensional versions of the 
rule. The mean-field fixed-point density is independent of initial density. 
Under one-dimensional Life the only cells in state 1 at large time are those 
which are part of a glider. Randomly chosen initial configurations rarely 
produce gliders, hence the large-time density for this rule is quite low. The 
large-time statistics depend on the initial statistics. If the initial density is 
0.5, the large-time density is less than 0.05. For two-dimensional Life the 
large-time density is approximately 0.02, independent of initial density over 
a wide range. In the case of (3422), the mean-field fixed-point density is 
0.30, while the empirical densities are 0.27 and 0.02 for the one- and two- 
dimensional versions, respectively. Thus, for these rules, the mean-field 
theory estimate of large-time density is reasonable only for (3422) on the 
one-dimensional lattice. 

3.2. Local Structure Theory of One-Dimensional Life Analogs 

In order to improve the statistical estimates provided by the mean- 
field theory of one dimensional cellular automata, Gutowitz etal. ~7) 
introduced a generalization of the mean-field theory called the local struc- 
ture theory. In the local structure theory, the probability of a block of 
states is estimated in terms of the probability of smaller blocks which it 
contains. An iteration process on block probabilities similar in form to 
Eq. 1 above is set up. The corresponding equations are now rational, rather 
than polynomial, in block probabilities. These equations will be discussed 
in more detail below. Here we present results for local structure theory 
applied to the one-dimensional analogs of Life and (3422). 

We saw above that the mean-field theory yields an estimate of 0.37 for 
the large-time density of both one- and two-dimensional Life. Under the 
one-dimensional Life rule most initial configurations map to the 0 con- 

822/54/'1-2-33 
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figuration after a few time steps, so that the true large-time density for this 
rule is essentially 0. The fixed-point density for all orders of local structure 
theory 2-10 for one-dimensional Life is 0. 

The results for one-dimensional (3422) are somewhat more com- 
plicated than the corresponding results for one-dimensional Life. In Fig. 6a, 
the fixed-point densities of each order of local structure theory 1 through 
10 for (3422) are compared with the empirical large-time density. Inter- 
mediate orders of theory (orders 2-6) give less accurate estimates of the 
large-time density than the mean-field theory. However, still higher orders 
of theory provide increasingly accurate estimates. 

Local structure theory of order greater than 1 supplies more infor- 
mation than just an estimate of the large-time density. Higher orders of 
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Fig. 6. (a) The fixed point density of each order of local structure theory 1-10 for (3422) on 
the one-dimensional lattice. MC indicates the empirical value of the large-time density for this 
rule. (b) As in (a), but for the block 11. 
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theory also supply estimates of the probability of blocks of larger size. 
When all of these estimates are taken into account, the accuracy of local 
structure theory estimates of block probabilities typically increases 
monotonicallyJ 5) In Fig. 6b the large-time estimates of the probability of 
the 11 block for each order of theory (1 10) is compared to the empirical 
estimate of the large-time probability for this block. Here the theoretical 
estimates follow a more regular pattern than in the case of the density 
estimates. 

Above we saw that the mean-field theory has two drawbacks. First, it 
does not provide good estimates of statistical properties of a cellular 
automaton. Second, it is not capable of reflecting the structure of the lattice 
on which the automaton operates. We have just seen that a one-dimen- 
sional local structure theory of sufficiently high order overcomes the first 
drawback of the mean-field theory. Below, we will develop local structure 
approximations for rules on the hexagonal lattice. We will see that these 
approximations overcome the second drawback of the mean-field theory as 
well. 

3.3. Local Structure Theory on the Hexagonal Lattice 

Local structure theory approximations for cellular automata on the 
square lattice have been studied previously. (6) It was found that a moderate 
order of theory provided good approximations to the statistical properties 
of Life. We will now review that theoretical development briefly, and then 
treat the case of the hexagonal lattice in more detail. Then we will apply 
the theory to rule (3422) on the hexagonal lattice. 

The action of a cellular automaton, r, on a measure # is defined by 

z# (E)=#( r  I(E)) (2) 

were E is a #-measurable subset of configurationsJ 7) That is, the 
probability of E under ~# is the sum of the probabilities under # of the 
preimages of E under ~. In local structure theory, we represent E by an 
interlocking cover of sets of a fixed size, and determine the preimages of the 
elements of this cover. 

Explicitly, let a frame, F, be a finite subset of the lattice. A block, B, on 
F is an assignment of states to some or all of the cells of F. Further, let PF 
be an assignment of probability to all blocks on F. We call PF a block 
probability function, and the probability assigned to a block B will be 
denoted PF(B). A block probability function is required to satisfy the 
Kolmogorov consistency conditions. (3) That is, the probability assignment 
must be normalized, non-negative, and consistent: the sum of the 
probabilities of all blocks which contain another, smaller, block at a given 
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position is the same as the probability of the smaller block in that position. 
A block probability function is further required to be locally shift-invariant. 
This means that the probabilities assigned to all blocks on subframes 
within a given frame are the same, independent of where the subframe is 
placed within the given frame. 

A finite block measure, /~F, is a measure which assigns probability to 
blocks on all frames in terms of the probabilities of blocks on a particular 
frame F. Probabilities of blocks on frames larger than F must be deter- 
mined by extension of a block probability function PF. Extension on the 
hexagonal lattice is discussed below. Assume for the moment that extension 
of a block probability function is defined. Let o F be a map from measures 
to measures such that 0"F# is a measure which agrees with # on blocks on 
F, and assigns probability to blocks on larger frames by extension. For  
each frame F, we define the local structure operator for a cellular 
automaton ~ as 

A F(V) #(E) = C~ FtG F#(E ) (3) 

Intuitively, AF('r ) is a map from measures to finite block measures which is 
an approximation to the map (2) associated with v. In the sense that o F 
(which represents the extension of probabilities of blocks on F to blocks on 
the entire lattice) becomes "close" to the identity as F becomes large, AF('C ) 
approaches r as F becomes large. Implementation of Eq. (3) hinges on the 
ability to effect the extension process aF. While one-dimensional extensions 
are exact and straight forward, (7) extensions on the hexagonal lattice are 
only approximate. 

3.3.1. Extension of a block probability function on the hexagonal lattice 

To implement AF('~ ) on the hexagonal lattice, it is necessary to 
estimate Pr' given PF, where F '  contains all cells which are neighbors of 
cell in F. An ideal estimate would: (1) satisfy the Kolmogorov consistency 
conditions; (2 )be  of maximum entropy among those PF' that are 
consistent with PF; and (3) be shift-invariant. In one dimension, Bayesian 
extension (7) is guaranteed to satisfy these requirements. In more than one 
dimension, a shift-invariant extension may not exist, much less satisfy the 
Kolmogorov consistency conditions, or be of maximum entropy. (1~ 

We will obtain extensions by a simple, approximate method which is 
suggested by analogy to the one-dimension extension process. This exten- 
sion method is based on a technique introduced in Ref. (12). In the exten- 
sion process, large block probabilities are estimate by rational functions of 
the probabilities of small blocks which they contain. In accordance with the 
terminology introduced above, we will call this process Bayesian extension. 
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As pointed out by Schlijper ((Ref. 10) and personal communication), 
Bayesian extension suffers the drawbacks that the probability estimates 
obtained in this way need not: (1)be normalized; (2)preserve the sym- 
metries of the lattice; (3) be locally shift-invariant; or (4) be of maximum 
entropy. Schlijper and Westerhof (12) compensated for potential asymmetries 
of the extension process by explicit symmetrization of the extended 
probabilities. Their method is presented below in the present context. 

The goal is to define a block probability function on a frame F'  which 
is the preimage under the cellular automaton of a frame F. F and F '  need 
not obey any lattice symmetry. Here the process is described in general. An 
explicit description of the actual extensions employed is given below. The 
strategy is as follows: We start with a block probability function Pe on the 
frame F. For each block on F', we begin matching blocks on F one at a 
time with sub-blocks of the block on F'. A product of the probabilities 
of each new F-block is accumulated. Concurrently, a product of the 
probabilities of the intersection blocks is accumulated. Since we have 
assumed shift-invariance of the block probability function PF, the inter- 
section-block probabilities may be found by restriction of PF to the inter- 
section frame using the Kolmogorov consistency conditions. Finally, the 
product of the F-block probabilities is divided by the product of the inter- 
section-block probabilities. The intuitive reason for the division is that 
in the one-dimensional extension procedure it rigorously provides a 
maximum-entropy estimate. 

In general, extension for F to F '  may be done in stages: first from F to 
F1, then from F~ to F2---, and finally from Fk to F'. In the extension 
processes described below, a new stage will always begin when block 
probabilities have been defined on a frame which respects some of the sym- 
metries of the lattice. The reason is that asymmetries may have been 
introduced by the extension process to that point. This is compensated for 
by averaging the estimates over the appropriate lattice symmetries, and 
then normalizing. Extension continues with symmetrized block 
probabilities. New stages may also begin when probabilities have been 
defined on frames to be used as intersection frames in succeeding stages 
(see below). 

Below, two special cases of this extension process are discussed in 
detail. Numerical studies based on these extensions will then be presented. 
We use the following notation for particular frames on the hexagonal lat- 
tice. Frames consisting of cells in a closest-packed arrangement are denoted 
with a single subscript. A single cell is denoted F~. F2 is a contiguous pair 
of cells, F3 is a triangle of cells, and F7 is a cell with its 6 nearest neighbors. 
Rectangular arrays of cells are denoted with two subscripts; e.g. F(1 • 3) is a 
single line three cells long. The basic frame of the mean field theory is F1. 
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The two cases of local structure theory we will develop below are those in 
which the basic frame F of AF(~) is F3 and FT. The entire extension process 
for these two cases is summarized in the notation described above in 
Tables II  and III. In the following sections, the extensions will be described 
in words. 

3.3.1.1. The triangle approximation, F 3 

The collection of neighbors of cells in F 3 under a nearest neighbor 
cellular automaton will be denoted F12. Hence, to implement AF3(~), we 
must compute the probability of blocks on F12 in terms of the probability 
of blocks on F 3. The extension from F 3 to F12 will be presented in stages: 
F3 to Fs, F5 to F7, and F 7 to  F12 (see Fig. 7). For a summary of the exten- 
sion stages underlying the triangle approximation see Table II. Here the 
stages are described in detail. 

(1) F3 to F5 

The probability of a block on F5 is estimated by the product of the 
probabilities of the thee triangles which fit into Fs, divided by the product 

a b 

12 

Fig. 7. (a) The extension of a block probability function on F3 to a block probability 
function on Fs. (b) The extension of a block probability function on F5 to a block probability 
function on FT. (c) The extension of a block probability function on F7 to a block probability 
function on F12. 
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of the probabilities of the blocks on F2 which occur as intersections of the 
triangles (Fig. 7a). The F2 block probabilities are found by summation over 
the appropriate triangle probabilities. 

(2) /75 to F 7 

We next estimate the probability of a block on F7 as the product of 
blocks on the two F5 frames which cover F7, divided by the probability of 
their (1 x 3)-block intersection (Fig. 7b). The probabilities of the (1 x 3)- 
blocks can be obtained by partial summation of the F 5 probabilities just 
obtained. 

Note that the extension shown in Fig. 7b has only two-fold symmetry, 
while F7 has six-fold symmetry. Thus, a block probability measure of F 3 

which respects the lattice may not result in symmetric assignment of 
probabilities to blocks on F7. In order to recover a symmetry-preserving 
extension, the construction described above is performed in above in all 
possible orientations, and then the results are averaged. 

(3) F 7 to F12 

Probabilities of blocks on F12 are found by the overlap of three copies 
of F7 as shown in Fig. 7c. The first two copies have an F~o union and an F4 
intersection. The union of the remaining copy of F7 with the F10 frame just 
obtained is F12, while the intersection of these two frames is F5 of Fig. 7a. 
The F4 and Fs intersection block probabilities are found by restriction of 
the (symmetrized) F 7 probabilities from the previous stage of extension. 
This extension has no symmetry. 

3.3.2. AF3 

Let b be a block on F3, and B a block on F12. We estimate P'+~(b), 
the probability of b at time t + 1 in terms of Pt(B), the probability of 
blocks B at time t by 

P'+ '(b) = ~ 6(b, v(B)) P'(B) (4) 
B 

where the sum is taken over all blocks B on F12, and where 6 is 1 if r (B) is 
identical to b, and 0 otherwise. 

3.3.3. The hexagon approximation, F 7 

The set of nearest neighbors of cells in F7 is F19. The process of 
obtaining estimates for probabilities of blocks o n  F19 given probabilities of 
blocks on F7 follows the pattern of extension described above for the 
triangle approximation. The first stage is the same as the third stage of the 
triangle approximation, in which block probability estimates on F ~  are 
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Table II. Extension underlying the triangle approximation. Each stage 
contains a restriction and an extension. Extensions are indicated by an T 

and restrictions by a ~. Each stage uses the results of 
the previous stage. Some stages are terminated by a symmetrization step 

1. F3TF5 F3,LF2 
covering frame: F3; intersection frame: /72 

2. F s T F  7 Fs.~F(I• ) 
covering frame: Fs; intersection frame: F(I • 3) 
Symmetrize F7 

3. FT"~FIz F7~.F4;FT~.F 5 
covering frame: FT; intersection frames: F4, F5 
Symmetrize F12 

found in terms of the probabilities of blocks on F 7. In the second stage, 
probabilities of blocks on F19 are found by the overlap of three copies of 
F12 (not shown). The first two copies have an F16 union and an F8 inter- 
section. F8 probabilities are found by restriction of f12 probabilities. The 
union of the remaining copy of F12 with the F16 frame just obtained is F19 , 
while the intersection of these two frames is a particular F9 frame. Block 
probabilities on the intersection frame are found by restriction of F~2 
probabilities. This extension is again asymmetric, and must be symmetrized 
as above. The entire extension process from F7 to F19 is summarized in 
Table III. 

The equations for the evolution of probabilities of FT-blocks under a 
cellular automaton are the same in form as Eq. 4; the sum is taken over all 
blocks B on F19. 

3 .4 .  N u m e r i c a l  S t u d i e s  o f  R u l e  ( 3 4 2 2 )  

We studied the evolution of block probabilities under the cellular 
automaton (3422) with Monte Carlo techniques and local structure theory 

Table III. Extension Process Underlying the Hexagon Approximation. 
Notation as in Table 2 

1. FT"fF,2 F7$F4;FT,LF 5 
covering frame: FT; intersection frames: F4, F5 
Symmetrize F12 

2. F12TF19 F12~,Fs;F~2~,F9 
covering frame: F12 ; intersection frames: Fs, F 9 
Symmetrize FI9 
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as described above. In Fig. 8, the evolution of the density under (3422) on 
the hexagonal lattice is shown. In this figure, Monte Carlo sampling is 
compared with local structure theory approximations based on F1, F3, and 
F7. The initial state in all cases is unbiased and uncorrelated. For the first 
four generations, the various orders of theory cannot be distinguished. As 
correlations develop under continued applications of the rule, the mean 
field theory and the triangle approximation deviate from the empirical den- 
sity. The hexagonal approximation continues to track the empirical density 
curve well, until roughly generation 16, at which point it too begins to 
deviate. Even at high-generation numbers, however, the hexagon 
approximation correctly captures the general trend of the Monte Carlo 
curve. While the empirical density is approximately 0.0218, the mean field 
and triangle approximations have limiting values of 0.31 and 0.29, respec- 
tively. The hexagon approximation has a limit density of 0, which, though 
incorrect, is a much better estimate of the true limit density than the lower 
order estimates. 

The density is a crude statistic. To better understand the distinctions 
between the different orders of approximation, we also studied the 
evolution of several 7-cell hexagon probabilities. These probabilities follow 
a variety of time courses to equilibrium. Some have a local extremum at a 
low generation number, others are monotonic. 

Three representative cases are shown in Fig. 9. Figure 9a depicts the 
evolution of the probability of the hexagon which has a solitary 1 on the 
periphery. The mean field and triangle approximation are only able to 

0 . 6 0  

O. 5 0  

O, 40 

0.30 

0.20 

0.I0 

0.00 
! 

Log2(generation number)  

Fig. 8. Evolution of the density under (3422) on the hexagonal lattice. Monte Carlo results 
(solid line) are compared to estimates from AFI (dotted line), AF3 (dot~lash), and At7 (dashed 
line). 
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follow the rising phase of the empirical curve, while the hexagon 
approximation tracks the declining phase as well. This is a general obser- 
vation: the larger the order of the theory, the longer it is able to follow the 
dynamics of a rule. In particular, the superiority of the triangle 
approximation over the mean-field theory is most evident at early times, as 
can be seen in Fig. 9b. The hexagon of all O's (Fig. 9c) is the hexagon 
whose probability is least well-estimated by the low order theories. 
Schulman and Seiden/13) observed a similar phenomenon in their study of 
corrections to the mean field theory for Life. They found that if they 
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Fig. 9. Evolution of selected hexagon probabilities under (3422) on the hexagonal lattice. 
Monte-Carlo results (solid line) are compared to estimates from Ar~ (dotted line), AF3 
(dot~lash), and At7 (dashed line). The normalized initial probability for each block is 0.5. 
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explicitly compensated for the "vacuum" their corrected mean field theory 
was in better accord with experiment. Here we found that the unaided 
hexagon approximation is sufficient to estimate the extent of the vacuum. 

4. C O N C L U S I O N S  

We developed an approximation scheme for cellular automaton on the 
two-dimensional hexagonal lattice. We saw moderate orders of 
approximation reasonably capture the statistical features of a particular 
complex automaton on that lattice. 

This rule, (3422), was chosen for detailed study because it appears to 
share many of the features of Life on the two-dimensional square lattice. It 
too has a low limit density (about 0.02 in each case), and supports a wide 
variety of small, temporally periodic structures. The one crucial attribute of 
Life not possessed by hexagonal (3422) is the ability to produce gliders. We 
suggest that this distinction between Life and (3422) is due to an interac- 
tion between the nature of a cellular automaton rule and that of the lattice 
on which it operates. 

To explore this suggestion, we studied (3422) on the line and the two- 
dimensional hexagonal lattice. We saw through empirical simulation that 
the same rule can eXhibit very different behavior on lattices of different 
structure. 

The mean-field theory fails to distinguish one lattice from another. 
Hence, the mean-field theory approximations of (3422) on the various 
lattices are identical. Higher order local structure theory can distinguish 
between lattices, and does so increasingly well as order increases. This is 
demonstrated by comparison of higher order local structure theory 
approximations of the one-dimensional and two-dimensional hexagonal 
lattice version of (3422). 

We employed an extension of block probabilities on the hexagonal lat- 
tice based on a technique of Schlijper and Westerhof. (12) They considered 
the problem of estimating the critical temperature of the Ising model on the 
hexagonal lattice. They found that, using only extension of Pe3 to PFT, they 
could estimate the critical temperature within 6 %, while the mean-field 
theory is only accurate to within 65 %. In the present study, we found a 
similar degree of improvement over mean-field theory in the estimation of 
statistical properties of cellular automata. 

The results presented here have potential bearing on studies of lattice 
gas automata. (4) In principle, the method developed here may be applied 
directly to the lattice gas automaton on the hexagonal lattice. In practice, 
however, the large number of possible cell states in these rules prohibits 
direct application of the method. It may be possible to take advantage of 
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the conservation laws obeyed by latice gases to break the approximation 
into managable pieces. 

It is clear why a lattice gas on the hexagonal lattice "works," while a 
lattice gas on the square lattice does not. The square lattice automaton 
conserves certain quantities not conserved by a physical gas. For more 
general automata, such as those studied here, it may not be possible to 
appeal to physical intuition to explain the differences in behavior of 
otherwise identical rules on different lattices. We hope that continued 
efforts along the lines pursued here will provide deeper intuitions. 
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